Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses.
نویسندگان
چکیده
This study examined the relationship between the affinity of glutamate agonists for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the characteristics of the physiological responses elicited by endogenous activation of the AMPA receptors. We tested the effects of chaotropic ions on [3H]AMPA binding in synaptic membranes as well as on synaptic responses elicited in CA1 by electrical stimulation of the Schaffer/commissural pathway in the in vitro hippocampal slice preparation. Of the chaotropic ions tested, only perchlorate and thiocyanate produced large increases in [3H]AMPA binding to synaptic membranes. The effect was due to an increase in affinity for agonists, as shown by a shift of the displacement curves of 6-cyano-7-nitro[3H]-quinoxaline-2,3-dione binding by AMPA or glutamate. The effect of thiocyanate on [3H]AMPA binding was extremely sensitive to temperature, as the binding was increased almost 10-fold at 0 degree C but only 2- to 3-fold at 35 degrees C. The effect of perchlorate was only weakly temperature dependent. Similarly, thiocyanate and perchlorate were the only chaotropic ions tested that increased the initial slope and amplitude of the extracellularly recorded potentials evoked in CA1 dendritic field. Both ions did not change paired-pulse facilitation, an index of transmitter release, or fiber volley amplitude, an index of afferent recruitment. The chaotropic ions had no significant effects on either [3H]glutamate binding to the N-methyl-D-aspartate receptor or N-methyl-D-aspartate receptor-mediated synaptic responses. Finally, the effect of perchlorate on synaptic responses was significantly reduced after induction of long-term potentiation. These results indicate that an increase in affinity of the AMPA receptors for their agonists results in increased synaptic responses and strongly suggest that characteristics of the AMPA receptor are modified following long-term potentiation.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملA Monte Carlo model reveals independent signaling at central glutamatergic synapses.
We have developed a biophysically realistic model of receptor activation at an idealized central glutamatergic synapse that uses Monte Carlo techniques to simulate the stochastic nature of transmission following release of a single synaptic vesicle. For the a synapse with 80 AMPA and 20 NMDA receptors, a single quantum, with 3000 glutamate molecules, opened approximately 3 NMDARs and 20 AMPARs....
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 15 شماره
صفحات -
تاریخ انتشار 1992